x^2+2+(-2x)=x+2+(-1)+(-x^2)

Simple and best practice solution for x^2+2+(-2x)=x+2+(-1)+(-x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+2+(-2x)=x+2+(-1)+(-x^2) equation:



x^2+2+(-2x)=x+2+(-1)+(-x^2)
We move all terms to the left:
x^2+2+(-2x)-(x+2+(-1)+(-x^2))=0
We get rid of parentheses
x^2-(x+2+(-1)+(-x^2))-2x+2=0
We calculate terms in parentheses: -(x+2+(-1)+(-x^2)), so:
x+2+(-1)+(-x^2)
determiningTheFunctionDomain (-x^2)+x+2+(-1)
We add all the numbers together, and all the variables
(-x^2)+x+1
We get rid of parentheses
-x^2+x+1
We add all the numbers together, and all the variables
-1x^2+x+1
Back to the equation:
-(-1x^2+x+1)
We get rid of parentheses
x^2+1x^2-x-2x-1+2=0
We add all the numbers together, and all the variables
2x^2-3x+1=0
a = 2; b = -3; c = +1;
Δ = b2-4ac
Δ = -32-4·2·1
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-1}{2*2}=\frac{2}{4} =1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+1}{2*2}=\frac{4}{4} =1 $

See similar equations:

| 49.95+18.32+.3m=95.87 | | -5+5x+x=-41 | | 2x+12+42+90=180 | | 9(x+3)=3(3x-3) | | −3(x+4)+84=12+12 | | 2(x+–9)+9=–1 | | 4-4x=-4x+6 | | 1/2x+x+3x=180 | | `x+3=-x-5` | | 3x/5=69 | | 115=(x+5)+(2x+28) | | 9x+6=2x+7. | | 2(q+–9)+9=–1 | | ⅔x=7 | | 7.5(x-4)=0.5x+10 | | m+21=-8 | | -5/8x-7/24x+1/3=42 | | 1/2(2x+10)=9 | | 115=x+5=2x+28 | | 6(x+1)=3(2x-4) | | -2(b-7)=-b+14-b | | -5x+9-7x=-123 | | (x*63)+((1-x)*65)=63.5 | | -1x+5=5x+6 | | -3b+1=-13+4b | | 22x-1=-2(x-14) | | 30-5+10x=1+x+3x | | -4k+2(5k-6)=-3k-39= | | 22/3f+1/2=95 | | B=429-(39x9) | | 4+3x7x=64 | | 5x(2x+20)=90 |

Equations solver categories